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ABSTRACT 

The linear perturbation equations describing the 
first variation of the state variables along a powered flight 
path are employed to develop the necessary conditions 
which m u s t  be satisfied on an optimized standard trajec- 
tory. I t  is shown that the minimization of some explicit 
function of the end coordinates, subject to certain other 
boundary functions being zero, can be  interpreted a s  being 
the limiting case of minimizing the s u m  of the squares of 
variations in these functions. Employing this interpretation, 
a control law i s  developed to obtain neighboring optimum 
trajectories i n  t h e  presence of small initial condition 
disturbances. The variations in the boundary functions 
resulting from this control law are derived, and the effect 

of varying the final time i s  discussed. I t  i s  shown that 
the sys t em i s  always stable, and is “ i n  the l i m i t ”  control- 
lable. The technique i s  applied to t h e  control of satellite 
orbit injection. 

i v  
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A TECHNIQUE FOR OPTIMUM FINAL VALUE CONTROL OF 
POWERED FLIGHT TRAJECTORIES 

Carl G. Pfeiffer 

1. INTRODUCTION AND SUMMARY 

T h i s  paper  develops a technique for controlling t h e  accelerat ion vector  a long  a powered fl ight 

trajectory, the  scheme being based  upon consider ing l inear  perturbations about a s tandard  (nominal) tra- 

jectory. It is assumed  that t h e  s tandard  t ra jectory h a s  been  opt imized by chosing a control program which, 

for the given in i t ia l  condition, c a u s e s  the final state to b e  a t ta ined  in  s u c h  a way as t o  minimize an 

expl ic i t  function of the end coordinates  and time, subjec t  to cer ta in  end constraints .  The task, then, is to  

construct  a perturbed control program, to be appl ied between the init ial  and  final time, which will re- 

optimize the  trajectory ia the  presence  of smal l  d i s turbances  to the in i t ia l  conditions. 

This well-known problem is complicated by the optimality property of the s tandard  trajectory,  

which implies  tha t  var ia t ions in the  control program have no first-order effect  on the pay-off function. 

Recent  work by Breakwell ,  Bryson, and Kelly (Ref. 1 and 2) cons iders  the second var ia t ion of the s tandard  

trajectory, l ead ing  to a rather complex control l a w  which p o s s e s s e s  potent ia l  ins tab i l i ty  near  the end point. 

T h i s  difficulty is el iminated here by interpreting the  optimization problem to be “equiva len tyy  (in a first-  

order s e n s e )  to the minimization of a cer ta in  quadratic function of t he  end coordinates .  

Employing th i s  interpretat ion in construct ing neighboring extremals ,  it is shown tha t  a s imple  and  

well-behaved control l a w  re su l t s  from ignoring the second variation of the s t a t e  var iab les  from the s tandard  

trajectory,  thereby developing control equat ions which are funct ions of t he  e lements  of the  familiar state- 

transi t ion mat r ices  ( the  adjoint  var iables) .  This approach effect ively y ie lds  a trajectory which a c h i e v e s  the 

1 



JPL Technical Report No. 32-447 

- 
s tandard  end conditions “as c lose ly  as poss ib l e” .  T h u s  if 8 q 

‘‘boundary functions” defined a t  the fixed final time t 

t imes y i e lds  

i s  a vector composed of var ia t ions  in the  f 
the corrective control between fixed in i t ia l  and final f ’  

- 
where 6 qo is evaluated from in i t ia l  condition variations,  W i s  a known matrix, 1 is t h e  identity,  and k i s  t he  

‘L uncorrectable” component of 8 q T h e  variation resu l t ing  from small  changes  in the final t ime is derived, 

which i s  then combined with 8 q f 
and  i t  i s  shown how the important velocity-to-be ga ined  approach to guidance  and control problems can  be 

p laced  within the framework of th i s  ana lys i s .  An application of the method i s  presented .  

- 

- f ’  
to y ie ld  the to ta l  8 q .  The “controllabil i ty” of the system i s  d i s c b s s e d ,  

- 

11. DESCRIPTION OF THE PROBLEM’ 

A point m a s s  i s  moving under controlled acce lera t ion  according to 

where the xi a re  the n s t a t e  var iab les  of t he  sys ten i  ( the  pos i t ion  and velocity coord ina tes ) ,  the  ci are  the 

m independent control var iab les  of t he  sys t em ( such  as the  a t t i tude  a n g l e s  of t he  control acce lera t ion  

vector), and t i s  time. The funct ions  fi a re  a s sumed  to be p i ecewise  differentiable with r e spec t  to the  s t a t e  

and  control variables,  and  the  control var iab les  may be  bounded. There  e x i s t s  an optimized s tandard  

(nominal) trajectory which, s ta r t ing  from the  init ial  condition X, ( t o ) ,  and employing the  control var iab le  

program Cs( t ) ,  a t ta ins  the  final s t a t e  Ts(t ) in s u c h  a way as  to minimize a t  t the  function p , (X,  t ) ,  s u b j e c t  

to the cons t ra in ts  p i ( g  t )  = given: where i = 2, 

equal to zero. It follows that the “penalty” function minimized at t on the s tandard  trajectory i s  (Ref. 3) 

f f 
, 1 .  Without l o s s  of generali ty,  all pi, will be assumed 

f 

‘Notat ion:  T h e  bar (-) i n d i c a t e s  a column vector; m a t r i c e s  a r e  denoted  by c a p i t a l  l e t te rs ;  I is t h e  ident i ty  
matrix; the  superscr ip t  T i n d i c a t e s  the  t r a n s p o s e ;  t h e  s u b s c r i p t  s r e f e r s  to t h e  s t a n d a r d  t ra jectory;  and S r e f e r s  to a 

var ia t ion  taken  a t  a fixed time. When appropr ia te ,  t h e  notat ion ( t )  w i l l  be  omi t ted  when referr ing to t ime-varying q u a n t i t i e s .  

T h i s  corresponds to  t h e  Mayer formulat ion o f  t h e  opt imiza t ion  problem. T h c  r a s e  where p1  is I O  I)c n i o x i m i z c t l  
i s  t rea ted  by reversing the s i @ s  on t h e  p .  funct ions.  

2 
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where the  vi a r e  known cons tan ts ,  u1 being taken  equal to 1.0. (The  vi must  be found by an  i te ra t ive  sea rch  

procedure in  the  construction of the s tandard  trajectory. Examples  of optimum powered fl ight t ra jec tor ies  

are d i s c u s s e d  in Ref. 4.) Control i s  terminated (control acce lera t ion  s e t  equa l  to zero) at t 

purpose  o f  t h i s  paper  t o  deve lop  a perturbed control variable program, 6 F ( t )  = c(t) - c,(t) for to  5 t 5 tf, 

to be  employed in  the  p re sence  of a sma l l  in i t ia l  condition variation, 6 ;(to), which will  c a u s e  the s tandard  

end  condi t ions  to  be a t ta ined  “as closely as possible”.  The technique for doing  t h i s  wi l l  be d i s c u s s e d  in 

Sec. IV. 

I t  i s  the f’ - 

Fol lowing  a usefu l  approach of guidance  and control a n a l y s i s  (Ref. 5), the f i r s t  variation of the 

s t a t e  var iab les  from the s tandard  trajectory i s  descr ibed  by the “variational equation” 

d 

dt 
- (6;) = F 6X+ G Fc (3) 

- - 
where 6 = ; ( t )  - z , ( t ) ,  6; = c( t )  - c , ( t ) ,  G i s  the n x rn par t ia l  der iva t ive  matrix 

[-] 
and F i s  then n x n par t ia l  derivative matrix 

Assoc ia t ed  with Eq. (3) i s  t h e  s t a t e  transit ion matrix U ( t  , t )  which, along the s tandard  trajectory,  follows 

the differential  equat ion  
f 

d 

dt  
- U + U F = O  

and  has  end condi t ions  

U ( t  1 ) = I  f ’  f 

where I i s  t h e  identity matrix, and  t 

variables.  T h u s  

i s  a given final time. The e lemen t s  of U are the familiar ad jo in t  f 

(4) 

d 

dt 
- [ u  8 4  = U G  8, (6) 

3 
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and 

Equation (7) i s  the fundamental equation of l i nea r  control ana lys i s .  I t  will  be the l inear ized  problem 

described by Eq. ( 7 )  which will be cons idered  in th i s  paper,  assuming that the  U matrix i s  invariant in a 

small  neighborhood of t he  s tandard  trajectory. 

111. THE OPTlMALlTY CONDITIONS 

Equat ion  ( 7 )  leads to  a derivation of necessa ry  condi t ions  tha t  must  be sa t i s f i ed  in order for a 

trajectory to be a minimum with r e spec t  to the control variables,  in particular,  the  condi t ions  s a t i s f i e d  on 

the  s tandard  trajectory (Ref. 6). 

From Eq. (2), t he  first  variation in p i s  

- 
8 p  = V T P  6; f 

where P i s  the 1 x n matrix [ d$d -  I. From Eq. (7) ,  the f i r s t  variation due  to 6C ( t )  along the  path i s  “f 

where 

’IT = V T P U G  

Let 8c(t) be allowed to range between the boundaries 

c i  min ( t )  - c i s ( t )  5 6 c i ( t )  5 ci max ( t )  - c i s ( t )  

(10) 

(11) 

Cons ider  an allowable variation 6c(t) f 0, which i s  appl ied  for an  in te rva l  E ,  an; suppose  that the  

inf luence  function q i  f 0 in th i s  interval.  Then  the  to ta l  variation in p due  to 6 c i ( t )  i s  

np = qi 8 c i  dt + higher order terms 

By taking 6 c . ( t )  = cons tan t ,  i t  follows that 

(12) 

(13) 

4 
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if p i s ,  in fac t ,  minimized on the s tandard  trajectory.  T h i s  impl ies  tha t  cis must  b e  maximum if 77; < 0, or 

minimum if  rli  > 0. Suppose in s t ead  that the ~ ( t )  = 0 in the  interval E,  c aus ing  p to b e  s ta t ionary  with 

r e spec t  to the  control var iab les .  Considering the  second variation of p, i t  follows tha t  

- 

limit A p  = 8 F T ( t )  D ( t )  SF( t )  E L  O 
E - r O  

where 

T h i s  impl ies  tha t  the matrix D i s  pos i t ive  semi-definite over  the  interval E,  which is a form of t h e  c l a s s i c a l  

Legendre necessa ry  condition. Since the  ci a re  assumed independent,  Eq. (13) and  (14) can  b e  combined to 

state n e c e s s a r y  condi t ions  which must  be  s a t i s f i e d  on t ra jec tor ies  i n  t h e  neighborhood of the  path which 

y i e lds  minimum p: either the  control i s  on the boundary or 

- 
rl ( t )  = 0 and 6 c ' ( t )  D ( t )  6 ( t )  2 0 (16) 
- 

where S C 

necessa ry  condition for a local minimum in t h e  ordinary ca lcu lus .  

( t )  is an arbitrari ly sma l l  variation as allowed by Eq. (11). Equation 116) is ana logous  to the  

T h e  influence func t ions  q i ( t )  are eva lua ted  on t h e  optimum trajectory, which mus t  b e  found, in 

general ,  by numerical s ea rch  procedures.  If it i s  assumed, however, t ha t  t h i s  task h a s  a l ready  been 

acco-mplished in  cons t ruc t ing  the  s tandard  trajectory,  and tha t  U matr ix  e lements  (Eq. 4) do no t  change  on 

t ra jec tor ies  nea r  by the  s tandard ,  t he  optimum control on perturbed t ra jec tor ies  is a t ta ined  by e i the r  s e t t i ng  

ci equal  to one  of its bounding va lues ,  or else applying Eq. (10) to ach ieve  optimality with r e s p e c t  to c i .  

T h e  l a t e r  s i tua t ion  is the mos t  interesting, and  will  be the s u b j e c t  of t he  remainder o f  t h i s  paper. 

3 The optimality condi t ions  deve loped  above  can b e  conc i se ly  summarized as follows. Define 

- 
The x i  ( t )  are called differential corrections for the function p (z, t ). f 

5 
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where, from Eq. (1) and (4) 

a h  

and, s ince  U ( t  t ) = I ,  the boundary conditions on Xi(.! ) a re  f’ ! f 

Then the Pontryagin maximum principle,  or genera l ized  Weiers t rass  condition, s t a t e s  t ha t  -h  i s  maximum 

with r e spec t  t o  the control var iab les  (Ref. 7). 

IV. THE MINIMIZED QUADRATIC FORM 

L e t  the  standard trajectory be s ta t ionary  with r e spec t  t o  the  control var iab les ,  and cons ide r  t he  

problem of determining the  control 6 F ( t )  which re-optimizes the  trajectory for smal l  changes  in the  init ial  

s t a t e ,  6 ;(to). Since 6 c(t)  has no first-order e f f ec t  on the return function p, i t  i s  necessa ry  to cons ide r  

a t  l e a s t  the  second  variation of F ( t )  in order to cons t ruc t  s u c h  a family of neighboring extrernals. T h e  re- 

optimization procedure i s  t rea ted  in a straightforward manner in Ref. 1 and  2, but, s i n c e  i t  i s  required tha t  

t he  s tandard  end  cons t ra in ts  be sa t i s f i ed ,  a potential  ins tab i l i ty  a r i s e s  as to 

adopted here will el iminate t h i s  difficulty by interpreting the  minimization of p = V T P  (Eq. 2) to  be 

The point of view to  be  + 7’ 

6 ‘  equivalent” to  the minimization ( a t  t he  f ixed  time t ) of the  quadratic form f 

1 
q = a p T p = a  2 p i  2 

i =  1 
( 22) 

6 
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where u is a pos i t ive  cons tan t  of proportionality, and  the pi( L,t) are the “boundary functions” defined above. 

(It is as sumed  that the  boundary functions a re  suitably normalized to make them dimensionally compatible.) 

It wi l l  be  s e e n  tha t  this approach leads to a s imple  and well-behaved control law, which is a generalization 

of t he  well-known “required velocity” concept currently being employed for guidance of rocket vehic les .  

T h e  first-order equivalence of the  minimization of the penalty functions p and  q can b e  e s t ab l i shed  

by suppos ing  t h a t  a smal l  in i t ia l  condition error has been appl ied  to  the s tandard  trajectory, and a perturbed 

control program h a s  been constructed such  tha t  the penalty function q is minimized. From the d iscuss ion  in 

Sec. 111, i t  follows that 

where qT i s  t he  influence vector corresponding to the penalty function q, and  P, is the minimized value of 

the  boundary function vector 
4 

As the in i t ia l  condition perturbation approaches  zero, the e lements  of the  influence matrix [P U G] , 

evalua ted  a long  the  neighboring optimum trajectory, become equal  to the va lues  obtained on t h e  s tandard  

trajectory. From Eq. (10) and  (23) i t  follows that 5 and F, a re  both perpendicular to the  columns of [ P  U G I .  

Thus, i f  t h e s e  column vectors span  the  s p a c e  perpendicular to 

parallel ,  i.e., there i s  a constant p such  tha t  

- - 
and p,, i t  follows that and  p, become 

- 
P, = PV (25) 

- - 
Set t ing  (2 u p )  = 1, the  influence functions 6 and 5 (and the differential corrections A 

4 4 

identical ,  and the  two optimization problems can b e  said to be equivalent in the  first-order s e n s e  in  the 

limiting case Ip, I + 0. It i s  therefore reasonable  to interpret the  Lagrange multiplier vector on the s tandard  

trajectory to b e  the limiting value of 

and  A )  become 

- 

7 
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and to obtain a neighboring optimum control law which der ives  6; from Eq. (26). From the definition of q i t  

can be s e e n  tha t  this approach to the neighboring optimum control problem y ie lds  a perturbed trajectory which 

a t t a ins  the standard 

in F ig .  1. 

“as closely as possible.” A geometrical interpretation of t h i s  ana lys i s  i s  p resented  

- 
Pw = MINIMIZED VALUE OF 
Po EFFECT OF INITIAL 
- 

CONDITION DISTURBANCE - 
P‘ = EFFECT OF CONTROL 

P L M  SPANNED BY 
COLUMNS OF [PUdj 

Fig. 1. The Control Geometry 

It will be  convenient to define a rotated coordinate sys tem (*), where 

- - *  - - 
p = q = L p  

and hence  

(27) 

where L i s  an orthogonal transformation chosen  s o  tha t  
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From t h i s  construction i t  follows tha t  the q1 direction l i e s  a long  u, and that k, = I v, I. I t  is a lways  

poss ib l e  to cons t ruc t  a rotation matrix L when given v ,  by a Gramm-Schmidt process ,  for example. (The  

L matrix is no t  unique.) 

- 

Consider  now the  variation in r/ ( t )  (Eq. 10) between the  control reference trajectory and  a neigh- 

boring extermal.  L e t  i t  b e  a s sumed  that t h e  U and Q matrix e lements  a r e  invariant,  and tha t  t he  mixed 

par t ia l s  of the  fi with r e spec t  to c .  and xk can  be ignored. Then, dropping the (*) notation, 
I 

where 

6 v T  - = [.. (?),..., ( ~ ) ]  

and D i s  an m x rn matrix with e l emen t s  

(31) 

( T h e  D matrix was  d i s c u s s e d  in Section 111.) L e t  the variation in 

in i t ia l  time t o  be 

due to s t a t e  var iab le  devia t ions  a t  some  

9 
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and the variation i n  7 after corrective control action be 

where Eq. (30) has been used to determine F ( t ) .  (The  ex i s t ence  of the inverse  of D, and the choice  of the 

m i n u s  sign i n  Eq. (34),will be d i scussed  in Section VI.) From Eq. (IO), and because  of the construction of 

y ,  the  f i rs t  row of the matrix ( V U G )  is zero, and  (ks + 6 q l )  = k can be directly eva lua ted  from Eq. (33). 

Equation (34) can now be written 

- 

where 

Note that Eq. (37) a lways  guarantees  the sys tem response  to be wc.ll brhavcd f o r  arbitrary input 6 To, even 

T h e  c a s e  k = O  w i l l  be d i scussed  i n  Section VI. b:quation (;IT) yields  the 67 which has m i n i m u m  
as + I f .  u/ 
magnitude, result ing from the given variation i n  init ial  conditions,  6 ; ( to ) ,  and control action between t o  

and t f .  The process can be thought of as a nonlinear feed-back loop, as shown in F ig .  2. 

Fig. 2. The  Control P r o c e s s  

10 
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V. THE VARIATION IN F INAL TIME 

The above  fixed-time a n a l y s i s  ignored the effect of changing  the y function by varying the  t ime of 

terminating the control acce le ra t ions  by a smal l  amount A t .  L e t  the “control time” t c  be t c  = t + A t ,  

where the magnitude of the control acce lera t ion  in the interval A t  i s  equal to i t s  s t anda rd  va lue  at t if A t  

i s  pos i t ive ,  and  equa l  to zero if A t  i s  negative.  Consider t c  to be the time at which the  4 i s  defined, then 

f 

f 

- 
where Q, i s  the partial  der iva t ive  matrix r e l a t ing  7 to the “velocity coord ina tes”  v ,  i.e., t hose  coord ina tes  

with de r iva t ives  which a re  func t ions  of F ( t  ). T h u s  f 

Q ,  = [3 (39) 

The A v i s  the increment in Y d u e  to changing  the  control acce lera t ion  vector in A t ,  t hus  

[Note  tha t  in the definit ion of A, t h e  effect  of s m a l l  changes  in s t a t e  var iab les  due to terms of t h e  form 

( 6  3 ( A t )  have  been ignored, which i s  cons i s t en t  with th i s  first order theory.] 

the 07 which minimizes yc = ( FTvc) i s  

It i s  e a s i l y  verified that 

where i t  i s  assumed tha t  the  ind ica ted  inverse  ex i s t s  ( the  c a s e  where i t  does not will  be d i s c u s s e d  in the  

following section).  The  quantity A, will be ca l led  the “genera l ized  velocity-to-be-gained”, i n  accordance  

with the ana logous  concept  in current gu idance  and  control literature. It i s  the  delta function of velocity 

which must  be added a t  t 

varying c(t ) and A t .  T h e  r e su l t an t  6 7 i s  f 

inorder  to s a t i s f y  the  constraints in a l e a s t  s q u a r e s  s e n s e .  I t  i s  a t t a ined  by f 

11 
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Not ice  tha t  if t c  i s  considered as the  f ina l  time, Eq. (42) y ie lds  

-T 7, Q, = (AI, A,, A J t C  = 0 

T h i s  i s  the “stopping condition” which terminates the  control. 

VI.  CONTROLLABILITY 

T h e  sys tem will be s a i d  to be cont ro l lab le  with r e s p e c t  to a cons t ra in t  yi if q i ( t c )  i s  zero for a l l  

in i t ia l  condition errors 6 ; ( t o )  (Ref.  8). From Eq.  (42) i t  immediately follows tha t  a l l  qi a r e  controllable 

for sma l l  changes  in t c  if and  only if ((3J-l ex i s t s .  [f  t h i s  i s  no t  t he  c a s e ,  i t  i s  n e c e s s a r y  to cons ider  

q (tf) by referring to Eq. (37). It c a n  be a s sumed  that t he  inve r se  of (QT QJ e x i s t s ,  for t h i s  matrix c a n  

a lways  be diagonalized, and t h e  nons ingular  submatrix corresponding to the  nonzero e igenva lues  c a n  then 

be considered. T h u s  if 

- 

where M i s  a n  orthogonal matrix and A i s  diagonal,  then 

would be defined as  the  “genera l ized  inverse”  ( s e e  work by Penrose) .  

T h e  controllability of the  s y s t e m  i s  re la ted  to properties of t he  U’matrix. From Eq. (36) i t  can be 

s e e n  tha t  W i s  symmetric and  pos i t ive  semi-definite,  s i n c e  D h a s  these  properties.  The symmetry of D 

follows from Eq. (32), and  t h e  pos i t ive  semi-definite property follows from t h e  d i scuss ion  in Section 111. 

( W  would be negative semi-definite if p were maximized.) T h e  c a s e  ID I = 0 over any  interval a long  the  pa th  

i s  a singularity corresponding t o  an  inflection point in ordinary minima problem. On s u c h  an interval D” 

d o e s  not ex i s t ,  and the  in tegrand  in  Eq. (36) must  b e  s e t  equal  t o  zero. With t h i s  d i scuss ion  in mind, 

imagine the W( I,, to) matrix to be d iagonal ized  by an  orthogonal transformation. Denoting the  transformed 

sys t em by A , Eq. (37) becomes 

12 
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where H i s  a diagonal matrix with e l emen t s  

I 

1 for i = 1 

1 i f  w . .  11 = 0 A 

I 
h.. = 

s a  

I 

(47) 

I A 
A 

T h e  wii a re  the  always-posit ive e igenva lues  of the  W matrix. It i s  Eq. (47) which demands tha t  (-w) i n s t ead  

of (+ W) b e  employed in Eq. (34) in order  to minimize 6 y. ( T h e  s ign  would be r eve r sed  i f  p were maximized 

in s t ead  of minimized on the  s tandard  trajectory.) Note that t he  number of nonzero e igenvalues  is equal  to 

the  rank of Q or the  rank of G, whichever  i s  smaller.  

I 
I 

I 

I 

I t  i s  now poss ib l e  to s a y  tha t  the sys t em i s  “in the limit” cont ro l lab le  with r e s p e c t  to the com- 
h A 

ponents  of 7 corresponding to the nonzero eigenvalues of W (tf, to),  for 

impl ies  k / ( k  + w i i )  + 0. Intuitively, t h i s  means  tha t  these  components a r e  approximately nul led  at t 

the final control l i e s  nearly a long  the q1 direction, thereby nulling yl. 

and  f ’ 

VII-  THE MINIMUM TIME TRAJECTORY - THE MINIMUM VELOCITY-TO-BE-GAINED 

Suppose there is some  vector to be nul led  “as c lose ly  as poss ib l e” ,  and, following Eq. (41), the 

velocity-to-be-gained a t  t f  i s  

But,  from Eq. (40), 

A T T  A T  = (constant)  At  2 

13 
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Let t ing  = A< - 7’ Thus ,  minimizing the magnitude of AU minimizes t h e  variation in  final time, A t  = t c  

and hence  P = - [ Q ,  QUI T -1 T Q ,  Q, the “minimum time” t ra jec tory  resu l t s .  

T h i s  c a s e  p re sen t s  an interpretation of t he  “required velocity” approach to  p re sen t  day  rocket  

gu idance  problems, where a t  most th ree  guidance  equat ions ,  g i ,  a r e  to b e  nulled a t  t 

A,, t he  gi defined s u c h  that t h e  inve r se  of [dg /dVI  ex i s t s .  Eq .  (48) then becomes  

by the  appl ica t ion  of f 

T h e  conventional treatment of t h i s  problem usua l ly  involves  cons t ruc t ing  a s t e e r i n g  program which c a u s e s  

the vehic le  to s tay  near  t he  s tandard  trajectory during the  early portions of fl ight,  and  fo l lows  Eq. (50) n e a r  

t f .  T h e  above ana lys i s  provides a technique  for accompl ish ing  the  des i r ed  t a s k  “optimally”, eliminating 

the  ever-present problem of caus ing  a l l  components of A 7  to go to zero simultaneously.  

VIII. AN EXAMPLE4 

Suppose a free-fall trajectory i s  to be a t ta ined  with maximum horizontal  speed ,  i, (-& i s  a minimum) 

sub jec t  to t h e  constraint  

will b e  a s sumed  planar in a cons t an t  gravity field,  g, with cons t an t  th rus t  acce le ra t ion ,  a, accord ing  to 

= 0 and y = y,, where the  coord ina te  sys t em i s  as shown in F ig .  3. T h e  motion 

.. 
x = a COS 8 

.. 
y = a s i n 9 - g  

(51) 

(52) 

t’ 
THRUST TERMINATED AT TIME I ,  

Fig .  3. T h e  Standard Trajectory 

4Discussed in Ref.. 1. 
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- 
1 
- 
v 

0 

0 - 

The control variable is 8. Equation (1) becomes 

The U matrix (Eq. 2 through 7) i s  

u ( t  , t )  = f 
0 ;I 1 

where r = ( t  - t ) .  Let the normalized be 

where v = i S ( t f )  and r = y ( t  ). Then 
s f  

P =  

From Eq. (53) 

G = a  

0 

1 
- 

v 

0 

[ ~ ]  

(54) 
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Suppose ,.,T = (1, 0, a ) ,  where (T i s  known. Then,  from Eq. (241, 

Take the transformation 

L =  

so that 

Then 

Q = L P =  

0 

0 

1 

0 

rn 
2: 

0 

cr 

-1 1 

16 
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(Not ice  that D is negat ive  definite for e in the f i r s t  or fourth quadrant, which i s  guaranteed  by Eq. (581.) 

Since,  by Eq. (SR), 

(64) 
~ dB = - (7) c o s 2  e 
dt  

Eq. (36) becomes 

0 0 0 

0 C’OS 8 - (:) s in  e 

where the minus  sign h a s  been chosen because  of the negative-definite property of D. .4pplying Eq. (37) ,  

5 71 = 8 910 (6.5) 

( ; q 2 )  = [* + u;33 - u 1 2 1 ]  [;;%I] 

73 - w 2 1  + w 2 2  
‘f 

where 

k 
o =  

2 
w 2  1 (k + uj22) ( k  + u~33)  - 

(66) 

(67) 

Le t t ing  k = v, the matrix e l emen t s  i n  Eq. (66) may be interpreted as impulse  r e sponse  func t ions  

which r e l a t e  t h e  controlled r e sponse  6 7. 

and 5 for a = 96.0 f t / sec2 ,  u = 25,000 f t / sec ,  r = 600,000 ft, and  0 

to the “open-loop” r e sponse  6 yi0. T h e s e  are plotted in Fig. 4 Lf 
0.1. 

T h e  ef fec t  of varying the final time can be  obtained from Eq. (42). 
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5 1.0 

a 
t o’8 
!$ 0.6 

H 
r 
-I 

2 0.4 

W 
I- 9 0.2 

W 0 3 
L O  + 200 180 160 140 120 100 80 60 40 20 0 
-I 
a g-6. TIME-TO-GO ( r ) , a e c  

Fig. 4. Altitude Rate Impulse Response v s  Time 

tF -to = TIME-TO- GO ( r ). aec 

Fig. 5. Alti tude Impulse Response v s  Time 

IX.  CONCLUSION 

T h i s  paper h a s  presented  an  a n a l y s i s  of t he  final value control problem which provides  a s imple  

scheme  for applying the  control acce lera t ion .  I t  has been shown tha t  the control func t ions  and s y s t e m  

re sponse  a re  always well behaved, caus ing  the s tandard  end condi t ions  to be a t t a ined  “as c lose ly  as 

poss ib le” .  T h e  e s sence  of the  technique  i s  the interpretation of the  problem of minimizing a function of 

the end coordinates, sub jec t  to cons t ra in ts ,  to be equiva len t  to the minimization o f  a certain uncons t ra ined  

quadratic form. Th i s  approach can provide some ins ight  into the  proper t ies  of neighboring optimum tra- 

jectori  es, and perhaps s u g g e s t  a sea rch  routine for  generating s tandard  t ra jec tor ies .  Certain approxima- 

t ions s u g g e s t  - themselves,  such  as s e t t i n g  k = 151 (Eq. 37) for a l l  perturbed t ra jec tor ies ,  thereby obta in ing  

a l inear  control (Fig. 2). T h e  problem of es t imat ing  the  init ial  s t a t e  of t h e  s y s t e m  from no i se  contaminated 

da ta  f i t s  n ice ly  within the  framework of t h i s  ana lys i s .  T h i s  a rea  i s  y e t  to be explored. 
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